package bluej.utility;
import java.util.HashMap;
import java.util.Map;
| The Damerau-Levenshtein Algorithm is an extension to the Levenshtein
| Algorithm which solves the edit distance problem between a source string and
| a target string with the following operations:
|
| <ul>
| <li>Character Insertion</li>
| <li>Character Deletion</li>
| <li>Character Replacement</li>
| <li>Adjacent Character Swap</li>
| </ul>
|
| Note that the adjacent character swap operation is an edit that may be
| applied when two adjacent characters in the source string match two adjacent
| characters in the target string, but in reverse order, rather than a general
| allowance for adjacent character swaps.
|
|
| This implementation allows the client to specify the costs of the various
| edit operations with the restriction that the cost of two swap operations
| must not be less than the cost of a delete operation followed by an insert
| operation. This restriction is required to preclude two swaps involving the
| same character being required for optimality which, in turn, enables a fast
| dynamic programming solution.
|
|
| The running time of the Damerau-Levenshtein algorithm is O(n*m) where n is
| the length of the source string and m is the length of the target string.
| This implementation consumes O(n*m) space.
|
| @author Kevin L. Stern
|
class DamerauLevenshteinAlgorithm
{
private final int deleteCost, insertCost, replaceCost, swapCost;
| Constructor.
|
| @param deleteCost
| the cost of deleting a character.
| @param insertCost
| the cost of inserting a character.
| @param replaceCost
| the cost of replacing a character.
| @param swapCost
| the cost of swapping two adjacent characters.
|
public DamerauLevenshteinAlgorithm(int deleteCost, int insertCost,
int replaceCost, int swapCost) {
|
| Required to facilitate the premise to the algorithm that two swaps of
| the same character are never required for optimality.
|
if (2 * swapCost < insertCost + deleteCost) {
throw new IllegalArgumentException("Unsupported cost assignment");
}
this.deleteCost = deleteCost;
this.insertCost = insertCost;
this.replaceCost = replaceCost;
this.swapCost = swapCost;
}
| Compute the Damerau-Levenshtein distance between the specified source
| string and the specified target string.
|
public int execute(String source, String target)
{
if (source.length() == 0) {
return target.length() * insertCost;
}
if (target.length() == 0) {
return source.length() * deleteCost;
}
int[][] table = new int[source.length()][target.length()];
Map<Character, Integer> sourceIndexByCharacter = new HashMap<Character, Integer>();
if (source.charAt(0) != target.charAt(0)) {
table[0][0] = Math.min(replaceCost, deleteCost + insertCost);
}
sourceIndexByCharacter.put(source.charAt(0), 0);
for (int i = 1; i < source.length(); i++) {
int deleteDistance = table[i - 1][0] + deleteCost;
int insertDistance = (i + 1) * deleteCost + insertCost;
int matchDistance = i * deleteCost
+ (source.charAt(i) == target.charAt(0) ? 0 : replaceCost);
table[i][0] = Math.min(Math.min(deleteDistance, insertDistance),
matchDistance);
}
for (int j = 1; j < target.length(); j++) {
int deleteDistance = (j + 1) * insertCost + deleteCost;
int insertDistance = table[0][j - 1] + insertCost;
int matchDistance = j * insertCost
+ (source.charAt(0) == target.charAt(j) ? 0 : replaceCost);
table[0][j] = Math.min(Math.min(deleteDistance, insertDistance),
matchDistance);
}
for (int i = 1; i < source.length(); i++) {
int maxSourceLetterMatchIndex = source.charAt(i) == target
.charAt(0) ? 0 : -1;
for (int j = 1; j < target.length(); j++) {
Integer candidateSwapIndex = sourceIndexByCharacter.get(target
.charAt(j));
int jSwap = maxSourceLetterMatchIndex;
int deleteDistance = table[i - 1][j] + deleteCost;
int insertDistance = table[i][j - 1] + insertCost;
int matchDistance = table[i - 1][j - 1];
if (source.charAt(i) != target.charAt(j)) {
matchDistance += replaceCost;
}
else {
maxSourceLetterMatchIndex = j;
}
int swapDistance;
if (candidateSwapIndex != null && jSwap != -1) {
int iSwap = candidateSwapIndex;
int preSwapCost;
if (iSwap == 0 && jSwap == 0) {
preSwapCost = 0;
}
else {
preSwapCost = table[Math.max(0, iSwap - 1)][Math.max(0,
jSwap - 1)];
}
swapDistance = preSwapCost + (i - iSwap - 1) * deleteCost
+ (j - jSwap - 1) * insertCost + swapCost;
}
else {
swapDistance = Integer.MAX_VALUE;
}
table[i][j] = Math.min(
Math.min(Math.min(deleteDistance, insertDistance),
matchDistance), swapDistance);
}
sourceIndexByCharacter.put(source.charAt(i), i);
}
return table[source.length() - 1][target.length() - 1];
}
}
. - DamerauLevenshteinAlgorithm
. DamerauLevenshteinAlgorithm
. execute
140 neLoCode
+ 39 LoComm