package bluej.utility;

import java.util.HashMap;
import java.util.Map;






| The Damerau-Levenshtein Algorithm is an extension to the Levenshtein
| Algorithm which solves the edit distance problem between a source string and
| a target string with the following operations:
|
| <ul>
| <li>Character Insertion</li>
| <li>Character Deletion</li>
| <li>Character Replacement</li>
| <li>Adjacent Character Swap</li>
| </ul>
|
| Note that the adjacent character swap operation is an edit that may be
| applied when two adjacent characters in the source string match two adjacent
| characters in the target string, but in reverse order, rather than a general
| allowance for adjacent character swaps.
|
|
| This implementation allows the client to specify the costs of the various
| edit operations with the restriction that the cost of two swap operations
| must not be less than the cost of a delete operation followed by an insert
| operation. This restriction is required to preclude two swaps involving the
| same character being required for optimality which, in turn, enables a fast
| dynamic programming solution.
|
|
| The running time of the Damerau-Levenshtein algorithm is O(n*m) where n is
| the length of the source string and m is the length of the target string.
| This implementation consumes O(n*m) space.
|
| @author Kevin L. Stern
|
class DamerauLevenshteinAlgorithm
{    
private final int deleteCost, insertCost, replaceCost, swapCost;

   

| Constructor. | | @param deleteCost | the cost of deleting a character. | @param insertCost | the cost of inserting a character. | @param replaceCost | the cost of replacing a character. | @param swapCost | the cost of swapping two adjacent characters. | public DamerauLevenshteinAlgorithm(int deleteCost, int insertCost, int replaceCost, int swapCost) {
| | Required to facilitate the premise to the algorithm that two swaps of | the same character are never required for optimality. | if (2 * swapCost < insertCost + deleteCost) { throw new IllegalArgumentException("Unsupported cost assignment"); } this.deleteCost = deleteCost; this.insertCost = insertCost; this.replaceCost = replaceCost; this.swapCost = swapCost; }
| Compute the Damerau-Levenshtein distance between the specified source | string and the specified target string. | public int execute(String source, String target) { if (source.length() == 0) { return target.length() * insertCost; } if (target.length() == 0) { return source.length() * deleteCost; } int[][] table = new int[source.length()][target.length()]; Map<Character, Integer> sourceIndexByCharacter = new HashMap<Character, Integer>(); if (source.charAt(0) != target.charAt(0)) { table[0][0] = Math.min(replaceCost, deleteCost + insertCost); } sourceIndexByCharacter.put(source.charAt(0), 0); for (int i = 1; i < source.length(); i++) { int deleteDistance = table[i - 1][0] + deleteCost; int insertDistance = (i + 1) * deleteCost + insertCost; int matchDistance = i * deleteCost + (source.charAt(i) == target.charAt(0) ? 0 : replaceCost); table[i][0] = Math.min(Math.min(deleteDistance, insertDistance), matchDistance); } for (int j = 1; j < target.length(); j++) { int deleteDistance = (j + 1) * insertCost + deleteCost; int insertDistance = table[0][j - 1] + insertCost; int matchDistance = j * insertCost + (source.charAt(0) == target.charAt(j) ? 0 : replaceCost); table[0][j] = Math.min(Math.min(deleteDistance, insertDistance), matchDistance); } for (int i = 1; i < source.length(); i++) { int maxSourceLetterMatchIndex = source.charAt(i) == target .charAt(0) ? 0 : -1; for (int j = 1; j < target.length(); j++) { Integer candidateSwapIndex = sourceIndexByCharacter.get(target .charAt(j)); int jSwap = maxSourceLetterMatchIndex; int deleteDistance = table[i - 1][j] + deleteCost; int insertDistance = table[i][j - 1] + insertCost; int matchDistance = table[i - 1][j - 1]; if (source.charAt(i) != target.charAt(j)) { matchDistance += replaceCost; } else { maxSourceLetterMatchIndex = j; } int swapDistance; if (candidateSwapIndex != null && jSwap != -1) { int iSwap = candidateSwapIndex; int preSwapCost; if (iSwap == 0 && jSwap == 0) { preSwapCost = 0; } else { preSwapCost = table[Math.max(0, iSwap - 1)][Math.max(0, jSwap - 1)]; } swapDistance = preSwapCost + (i - iSwap - 1) * deleteCost + (j - jSwap - 1) * insertCost + swapCost; } else { swapDistance = Integer.MAX_VALUE; } table[i][j] = Math.min( Math.min(Math.min(deleteDistance, insertDistance), matchDistance), swapDistance); } sourceIndexByCharacter.put(source.charAt(i), i); } return table[source.length() - 1][target.length() - 1]; } }

.   - DamerauLevenshteinAlgorithm
.   DamerauLevenshteinAlgorithm
.   execute




140 neLoCode + 39 LoComm